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ABSTRACT /(( Cé 536/5'0

It is pointed out that if one uses an approximate ground state

wave function in the familiar variational principle for the second-

order energy, that the approximate energy need have no special relation-

.ship to the exact energy (it may be larger or smaller). Further it is

shown that in some cases even with full use of the variation principle,

good accuracy of the ground state wave function does not imply corre-

sponding accuracy of the approximate energy.
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In situations where one wishes to know a second-order energy correc-
. 2 .
tion E( ), but does not have an accurate solution to the zero-order

1, . .
problem, a frequently used technique™ is to use as an approximation to
-~

E(z) the guantity J where
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. Here ¢a is an approximate wave function for the zero-order problem (we

will assume throughout that we are dealing with the ground state), H
~ s} N o
the zero-order Hamiltonian, V the perturbation, Eo E (¢o) Ho ‘bv))
~4 ~a
S~y Ry
E = ('t’u ) \' ¢0) )and Y is to be determined
Ar
variationally from § I=0.
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If we vary \" freely (in practice of course one is rarely able

o

)
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to do this) then one is led to a differential equation for the "exact"

o -EN T (V-F)F 20 @

2Y) ~
We will denote the solution of this equation by “’ and the value of J

to which it leads by J. One then readily finds successively that
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where we have introduced the eigen states of HO: Hp ¢~\’= B ¢'- v
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Further if we write a general as ‘+ ’-‘-“’ '\'8‘% then

one ‘has immediately that

~o

FoT= (8¢, (- o) SEW) (5)

From Eq. (2) and (3) we then have the well-known result that if
~ . 2 "
d}bac\’u (and hence E4g=Ep ) then® I = B ? , and Eq. (5) then

expresses the well known fact that under these same conditions an arbi- A
~

‘\atq
trary + yields a J which is an upper bound to J and hence to E(z)

~
In this note we wish to discuss the relationships among J, J and

~
E(z) in the more realistic case &D 1’: ¢° . First, concerning the

[ o]
relationship between J and J it follows immediately from Eq. (5) that
~ l\-)
J in general is not a lower bound to J  since a possible S Ww is

certainly an arbitrary multiple of @o . Thus in general S 3’=D
simply yields a stationary point although, of course, if, as is often
the case in practice,one is dealing with a ‘\NJ" of restricted variability,
it is quite possible that 8 3:-“-0 may in fact appear to yield a minimum.

We will not attempt a general discussion of the relationship between
J and E(Z),» but instead turn to two simple examples. In each Ho describes
a one-dimensional harmonic oscillator

Ho = f_z + L o w?® x>
2m [
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In example I,V=X while in example II, V = '\i X .  These problems

%
are readily solved exactly and yield, respectively, E(Z) = - ‘ICZ""“’)

and -Hh /( lom® w?)
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For each example we have evaluated J from equation (4) for Cbb

given by4

The results of the calculation are shown in figures I and II. Let
us first discuss example I. Here the important result is that J £ e
not J ¥ ew for the range of O shown (see footnote 4). For other
values of O between +1 one can get J values arbitrarily larger or
smaller than E(z). When coupled with our earlier remarks on the relation-
ship between 3" and J we have the obvious moral-anything can happen~
and we will not belabor the point further.

Now we turn to example II. Here we find J 7 E(Z) but in a curious
way, namely even for ofap , I+ EW , and in fact for ol=p we
have the largest deviation from E(z). The source of this peculiar be-
havior is not hard to find; it is bin them =0 term in Eq. (4), which
from Eq. (3) can also be written as ( 30, (V—%‘“) épx q’v) "Vu’) .

For =20 this term appears as the indeterminant form 0[0 . However

if one starts with o=0 initia].ly‘then, as is well known, Eq. (2) does

not determine C&o, #(n) , any finite value is allowed, while on the

other hand CQO,CV"%M)%) =0 whence 0Jo is to be read as O
(2)

and we have the familiar result for E . On the other hand one sees

>

' .
that if one starts with ¥ ¥0 then CQo, ‘(’“) is determined and
in fact is proportional to ‘/0(- so that in the limit -0 we find
that ©fo is to be read as a certain finite number. Hence the
N~
discrepancy. The moral here then is, in problems for which ( %o,V Qo)

f\ot\) .
avd | =3 are not identically zero (they were



identically zero in example I and in most polarizability problems)s,

~J

o~
that even if &5 is very nearly equal to &% , J need not be
very close to E(z).

We are indebted to Dr. Margaret Benston for several helpful

discussions.
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Footnotes and References

See for example T. P. Das .and R. Bersohn, Phys. Rev., 115, 897 (1959)
and M. Karplus and H. J. Kolker, J. Chem, Phys., 38, 1263 (1963).
The latter authors also discuss various alternative proéedures.
We discuss the indeterminate M=20 term in Eq. (4) at the end of
this note.
This is presumably what Das and Bersohn (reference 1) have in mind
in the discussion following their Eq. (13) (which is identical to
our Eq. (5)).

o~
In order that &o have no nodes and go monotonically to zero as \x|
increases, ® must be restricted to O$ot% ‘k\—%‘ (with the
usual definition of the bm ).
If one redefines E“’ as gmc Cb.,,v 3,,) , which also makes
( &, ') = , then one gets proper behavior at o¢ =0 and
a graph like that of figure I. However this is not a practical way

out since by hypothesis we don't know *o




